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Abstract: Nowadays, robotic arms are commonly used in industrial medical, and home service applications. For safety reasons, it 

is vital to aware their operating conditions such as speed, position, and torque which result in the need of delegate sensors with 

extra cost, bulky mechanical installation, and advanced data acquisition electronics. In contrast to using actual sensors, in this 

paper we present a development of sensorless torque estimation based on machine learning technique for Permanent Magnet 

Synchronous Motors (PMSM) focusing to serve safety required applications e.g., robotic arm. The proposed architecture 

comprises of the estimation model generation process and a motor test bench to facilitate and accelerate the implementation 

procedures. Three statistical based machine learning methods have been applied in this work including Neural Networks 

regression, Linear regression, and Stepwise regression. The estimation performance has been validated by comparing the 

estimated results with ground truths from an actual torque sensor. The estimation model based on Neural Networks regression has 

achieved highest accuracy at 0.6792 of RMSE and 0.9908 of R value. In addition, we investigated the realization of an 

application by using the proposed torque estimation technique in the simulated robotic arm collision detection experiment. The 

results show that the proposed torque estimation technique has efficacy to adapt in such use case with the detection error below 

22.38%. 
 

Keywords —PMSM, Torque estimation, Sensorless torque measurement, Machine learning, Regression. 

 

I. INTRODUCTION1 

Recently robotic arm/manipulator applications tend to be 

human-oriented operations, e.g., home-use [1],[2] medical 

[3], and manufacturing [4]. To choose an appropriate 

robotic arm, various parameters should be considered such 

as operating space, degree of freedom, robot geometry, load 

size and weight, movement speed, and rated torque. More 

importantly, safety features are necessary for every robot to 

guarantee no accident in operations, especially for those that 

interact or contact with human operators or users. Hence, 

advanced sensors, i.e., magnetic absolute encoder, and 

torque transducer are commonly employed to obtain 

information that are needed in algorithms for safety 

condition awareness of the robot. However, delicate sensors 

are in exchange for cost, size, power consumption etc. 
These gain interest in research for sensorless techniques 

developed to obtain operating conditions of robot actuators 

i.e., motors, completely based on electrical signals or back-

electromotive force (back-EMF) from the motor itself 

without using an actual or physical attached sensor. 
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Typically, a Permanent Magnet Synchronous Motor 

(PMSM) is controlled by energizing two of its three 

winding phases while one phase winding is not conducted 

and left floating creating back-EMF signals related to the 

motor operating activities [5]. The employing sensorless 

technique for speed and position control is presented in [6], 

better speed versus torque characteristics, high dynamic 

response, and zero electrical wear have been achieved, 

however, torque information was not investigated. The 

Electromagnetic Torque [7] is a deterministic mathematical 

calculation to determine motor torque based on back-EMF 

signals however the consistency of estimated torque relies 

heavily on accurate value of motor parameters. In contrast, 

capturing back-EMF signals and analyze with machine 

learning methods for regression can be exploited to estimate 

motor speed and torque [8] based on learned statistical 

information without the need for motor parameters 

knowledge. Thus, in this paper, we present the development 

of PMSM torque estimation technique based on machine 

learning for regression and the architecture for creating 

estimation models. We have developed a motor test bench 

to facilitate the model learning procedure also to evaluate 

the generated models. The proposed software system has 

been developed in MATLAB Simulink and tested on actual 

hardware with its own developed test platform. Two 

experiments were conducted to evaluate the performance of 
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the generated estimation models from the proposed 

architecture in the continuous torque measurement 

experiment and the usefulness of applying the estimation 

model in an application in the simulated robotic arm 

collision detection. 

II. PMSM TORQUE ESTIMATION 

A. Sensorless PMSM control 

Permanent magnet synchronous motors (PMSM) require 

advanced control processes to achieve desired operations. 

One of the commonly used PMSM control methods is Field-

Oriented Control (FOC) [9], [10] as its capability to provide 

motor rotation efficiency and maximum torque. FOC 

requires a number of parameters such as rotor position, and 

speed of the motor for its driving procedures. This 

information can be obtained by attaching a sensor at the 

motor shaft which adds system complexity cost and size 

while analyzing Back-EMF signals of the motor is a 

common alternative that can provide similar information. 

Conventionally, FOC motor control process uses only the 

rotor position or rotor angle (Theta) for switching pattern 

generation (SVM) providing to the PWM driver as 

described in Fig. 1. However, Back-EMF also has a 

significant relation to motor speed and torque which can be 

quantified by using mathematical calculations without using 

actual sensors [7]. Thus, in this work, we exploit the 

relation between motor torque and Back-EMF signal to 

estimate torque without using actual sensor based on a 

statistical analysis of Back-EMF signal and machine 

learning. 

B. Sensorless PMSM Torque estimation 

As stated earlier, the PMSM operation generates 

electromagnetic induction of magnetic fields that can be 

analyzed deterministically by Electromagnetic Torque 

equation [7], nevertheless uncertain motor parameters and 

the motor usage behavior such as operating time, current 

and temperature result in errors. In addition, estimating 

 
Fig. 1. PMSM control diagram 

 
Fig. 2 Machine learning process 

 
Fig. 3 Torque measurement;  

Torque of motor(Left) and Low-cost motor test bench(Right) 

motor torque can also be achieved by using statistical 

models of recorded Back-EMF signals and related motor 

operating conditions. By this technique, a number of motor 

parameters can be omitted for torque estimation resulting in 

a less parameter-dependent performance of the estimation 

process. To obtain the estimation models in this work, 

machine learning [11] approach is employed.  Three models 

were selected with different complexity. Linear regression 

(LR) [12], Stepwise regression (SR) [13], and Neural 

Networks (NNS) regression [14] are chosen as estimation 

models in this work. The models are generated from the 

learning process (training) that takes the input information 

of previously recorded Back-EMF signals and motor 

operational conditions formulated as the input vector of the 

estimation model.  The proposed input vector comprises of 

six features including current sampling (Iα and Iβ) and 

voltage sampling (Vα and Vβ) both are the result of Clarke 

transformation and Park transformation of current (Iq) and 

the rotational speed at the output shaft. The learning process 

adjusts model properties by the relation between the input 

vector and output target vector which is reference torque 

derived from a physical sensor. Fig. 2 illustrates the 

proposed machine learning process of torque estimation 

model generation. The output vector usually is normalized 

thus a calibration function is required. 

C. Motor Testbench 

  (1) 

The structure of proposed machine learning based PMSM 

torque estimation requires reference torque information for 

training procedure. An actual torque transducer is attached 

to the motor directly to measure the torque applied on the 
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motor rotor during the data collection process. To facilitate 

the training procedure, we developed a low-cost motor 

testbench that supports the data collection of a motor with 

actual load condition to simulate the real operation 

situation. Fig.3(right) illustrates the implemented motor 

testbench consists of a PMSM under the test with gearbox, 

output shaft and load inserting point, force sensor at motor 

stator, and speed sensor. The motor torque is acquired from 

the load cell sensor installed at the motor stationary part 

which is the torque applied at the motor stator. The motor 

rotor torque can be calculated by the principle of rotor-

 
Fig. 4 Schematic diagram of low-cost motor test bench 

stator torque relation as shown in eq.1 described in [15] that 

the force applied at the stationary part of the motor is equal 

to the rotor part of the motor as demonstrated in Fig.3(left). 

The motor under the test is controlled by a motor driver 

during the data collection process. The specifications of the 

motor are given in Table 4.  The motor driver is used to 

acquire Back-EMF signal as well as sensor data, i.e. force, 

shaft speed and position. A stain gate is used to measure the 

torque applied at the motor stator. A speed sensor is 

coupled at the output shaft of the gearbox. Fig. 4 depicts the 

electrical block diagram of the implemented motor test 

bench. A Microcontroller TMS320F28069[16] and Motor 

driver DRV8305[17] are occupied to control the motor 

under the test. We implemented the data collection and 

training process for creating torque estimation models on 

MATLAB Simulink. The training process employs 

Regression Learner toolbox [18] to generate estimation 

models with a choice of regression techniques. In this work, 

Linear regression and Stepwise regression are chosen. The 

Neural Networks based estimation model is learned from 

the Neural Networks time series toolbox [19]. In this work, 

we constrained the choice of regression models by the 

capability of implementation on actual hardware. A trained 

regression model for torque estimation is integrated into the 

motor control process developed on MATLAB Simulink 

using Texas Instrument C2000 support from embedded 

coder [20], thus, the generated torque estimation model can 

perform simultaneously on the motor driver microcontroller 

in real-time. 

III. EXPERIMENT AND RESULT 

A. Experiment setup 

We performed two experiment scenarios including 

continuous torque measurement and simulated robotic arm 

collision detection both performed using the implemented 

motor testbench cooperated with the proposed machine 

learning process of torque estimation model generation. The 

continuous torque measurement is to observe the 

performance of generated torque estimation models 

referring to an actual torque sensor. The simulated robotic 

arm collision mimics a use case by adapting the robotic arm 

application for collision detection [21]. Three machine 

learning models were used in the proposed machine 

learning process consisting of Linear regression, Stepwise 

regression, and Neural Networks. The recorded data for the 

learning process of estimation model generation was 

divided using sample holdout method into 80:20 ratios for 

train and test procedure respectively. The motor under the 

test was controlled at three constant speeds: 700, 1000 and 

1200 rpm. 

B. Continuous torque measurement 

In this experiment scenario, we study the efficacy of the 

generated estimation model for measuring torque in a 

continuous rotation period at a constant speed by comparing 

the estimation result to an actual torque sensor. Fig.5 

illustrates the torque waveform obtained from the torque 

sensor. The signal is divided into 2 phases regarding the 

amount of inserted load: load 1 with 1 kg. mass (green box) 

and load 2 with 2 kg. mass (red box). The estimation results 

were evaluated by using the RMSE and R-value methods 

[22], [23]. R-value is applied to determine the linear 

correlation coefficient between the measurement data and 

the estimation data to indicate the variance. Root Mean 

Square Error is applied to validate the result of the 

measurement data and estimation data, which approach to 0 

is superior. 

 

 
 

Fig.5 Result of Torque from physical sensor 
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C. Continuous torque measurement results 

- Speed at 700 rpm 

 
(a) 

 
(b) 

 

 
(c) 

Fig.6 The comparison of torque estimation and error at 700 rpm (a)The 

Result of Neural Networks (b) Result of Stepwise regression (c) Result of 

Linear regression 

 

- Speed at 1000 rpm 

 
(a) 

 
(b) 

 
(c) 

Fig. 7 Fig.7 The comparison of torque estimation and error at 1000 rpm 

(a) The Result of Neural Networks (b  Result of Stepwise regression (c) 

Result of Linear regression 

 

 

 

 

 

 

- Speed at 1200 rpm 

 

 
(a) 

 
(b) 

 
(c) 

Fig.8 The comparison of torque estimation and error at 1200 rpm (a)The 

Result of Neural Networks (b) Result of Stepwise regression (c) Result of 

Linear regression  

 

Fig.6 (a), (b), and (c), depict the results of continuous 

torque measurement using generated torque estimation 

models of three selected machine learning models compared 

with actual torque from the sensor at 700 rpm. The 

performance of the estimation models was evaluated by 

RMSE and R values. Neural Networks performed with 

lowest estimation error at RMSE value of 0.6792 while 

Stepwise regression and Linear resulted with RMSE of 

0.8971 and 1.0613 respectively. 

Fig.7 (a), (b), and (c), depict the results of continuous 

torque measurement using generated torque estimation 

models of three selected machine learning models compared 

with actual torque from the sensor at 1000 rpm. The 

performance of the estimation models was evaluated by 

RMSE and R values. Stepwise regression performed with 

lowest estimation error at RMSE value of 0.7756 while 

Neural Networks and Linear resulted with RMSE of  0.7758 

and 0.8624 respectively. 

Fig.8 (a), (b), and (c), depict the results of continuous 

torque measurement using generated torque estimation 

models of three selected machine learning models compared 

with actual torque from the sensor at 1200 rpm. The 

performance of the estimation models was evaluated by 

RMSE and R values. Stepwise regression performed with 

lowest estimation error at RMSE value of 0.7147 while 

Neural Networks and Linear resulted with RMSE of 0.7971 

and 0.8722 respectively. 
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TABLE 1 COMPARE THE RESULTS OF EACH METHODS 

Models 

700 rpm 1000 rpm 1200 rpm 

T est. 

(ms)* RMSE 
R 

value 
RMSE 

R 

value 
RMSE 

R 

value 

NNs 0.6792 0.9908 0.7758 0.9860 0.7971 0.9851 3.5 

SR 0.8971 0.9870 0.7756 0.9782 0.7147 0.9861 1.35 

LS 1.0613 0.9874 0.8624 0.9791 0.8722 0.9844 1.35 

*T est. is Average of time estimation. 

Table 1 summarizes the results of continuous torque 

measurement experiments. The Neural Networks based 

estimator performed well at low speed ranges (700 RPM 

and 1000 RPM) while consuming the highest resource 

among the others resulted in longest processing time for 

each estimation. Stepwise regression and Linear regression 

based estimated torque with more error compared to NNs at 

700 RPM whereas Stepwise regression performed with 

lowest error at 1200RPM in both R and RMS measures. 

The estimation time of both methods was 1.35ms which is 

faster than the NNs based estimator due to their lower 

model complexity. It should be noted that NNs based 

estimator has worst performance at 1200RPM which may 

resulted from the delay in each estimation period as it 

consumes more resource.  
 

 
Fig. 9 Simulation of the operate of the robot arm when it collides 

D. Simulated robotic arm collision detection 

In this experiment, the motor testbench was configured to 

operate in different conditions to the previous one. The 

purpose of this experiment is to determine the response 

characteristic of torque detection employing generated 

torque estimation models which is crucial for safety 

required applications such as a robotic arm. The output 

shaft of the motor was attached to the arm without load. A 

spring based stopper was installed to block the arm’s full 

cycle rotation as shown in Fig.9. This setting simulates an 

event of a robotic arm colliding with an object. The 

controller was programmed to limit the torque at a defined 

value by stopping the motor when the estimated torque is 

equal or larger. This experiment used the torque estimation 

models generated from the continuous torque measurement 

experiment. The limited torque values defined at 5 Nm. and 

8 Nm. 

E. Simulated robotic arm collision detection Results 

Table 2 and Table 3 summarize the results of simulated 

robotic arm collision detection experiments.  All estimation 

methods exhibit capability of detecting the amount of torque 

applied at the motor in a simulated use case with acceptable 

performance. However, at higher torque amount, the 

performance decreased in all estimation methods, especially 

at high speed ranges. The results from NNs based estimator 

were minor in most cases, suggesting that may be caused by 

the long estimation time in a limited resource processor. 

Despite the lowest model complexity, Linear regression 

outperformed in most experiment conditions which may 

result from a shorter time to take action as its estimation 

time is shortest. Thus, for the real-time required application, 

the lower model complexity should be considered. 

TABLE 2 SIMULATED ROBOTIC ARM COLLISION DETECTION AT SPECIFIC 

TORQUE EQUAL 5 NM. 

Motor speed Model 

Detected 

torque 

(estimator) 

(Nm) 

|Error| (Nm) / % 

error reading 

700 rpm 

NNs 5.03 0.42 / 7.71% 

SR 5.23 0.18 / 3.56% 

LR 5.18 0.16 / 3.00% 

1000 rpm 

NNs 5.12 0.48 / 8.57% 

SR 5.17 0.55 / 9.62% 

LR 5.13 0.63 / 10.94% 

1200 rpm 

NNs 5.03 1.45 / 22.38% 

SR 5.03 1.21 / 19.39% 

LR 5.04 0.28 / 5.26% 

 
TABLE 3 SIMULATED ROBOTIC ARM COLLISION DETECTION AT SPECIFIC 

TORQUE EQUAL 8 NM. 

Motor speed Model 

Detected 

torque 

(estimator) 

(Nm) 

|Error| (Nm) / % 

error reading 

700 rpm 

NNs 8.09 1.79 / 18.12% 

SR 8.05 0.95 / 10.56% 

LR 8.4 1.1 / 11.58% 

1000 rpm 

NNs 8.19 2.31 / 22.00% 

SR 8.07 1.3 / 13.87% 

LR 8.08 0.89 / 9.92% 

1200 rpm 

NNs 8.55 1.65 / 16.18% 

SR 8.18 1.27 / 13.44% 

LR 8.08 2.31  3.69% 

 
TABLE 4 SPECIFICATION OF MOTOR 

Motor parameter Value Unit 

Motor PMSM - 

Pole pair 8 - 

Rated speed 4840 rpm 

Stator resistance 0.43 Ω 

Stator inductance 0.00014 H 

Rated voltage 24 V 

Rated torque 0.13 Nm 

Gear ratio 

(Harmonic gear) 
100:1 - 
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IV. CONCLUSION 

A machine learning based PMSM torque estimation using 

the back-EMF signal has been presented in this paper. The 

proposed estimation model generation architecture has been 

implemented and incorporated with a motor testbench to 

facilitate the model training and data collection process. 

The estimation process was executed on a real-time 

embedded processor. The torque estimation was based on a 

choice of three statistical learning regression models 

including Linear regression, Stepwise regression, and 

Neural Networks for regression. The generated models form 

the proposed model creation system showed the capability 

of determining torque applied at the motor rotor where NNs 

achieved lowest estimation error at RMSE of 0.6792 while 

consuming the most resource. A simulated use case of the 

proposed torque estimation system has been studied in the 

robotic arm torque detection experiment to observe the 

ability to utilizing the generated model in real application. 

The proposed torque estimation method can be used for 

torque detection application with the maximum detection 

error of 22.38% where the majority of the results was below 

10%. In future, we will investigate the other machine 

learning algorithms to be included in the proposed model 

generation process. Also, the improvement in performance 

and resource consumption are the goals to realize the 

proposed method in real-time applications. 
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